segunda-feira, 30 de setembro de 2019

transição vítrea é a transição reversível em materiais amorfos (ou em regiões amorfas de materiais semi-cristalinos) entre um estado duro e relativamente rígido e um estado mole e "borrachoso" (como um líquido de ultra-alta viscosidade).[1] Um sólido amorfo que exibe uma transição vítrea é dito vítreo. O processo de super-resfriar um líquido viscoso até o estado vítreo é chamado de vitrificação, do latim vitreum, "vidro" via francês vitrifier, "vitrificar".
Apesar de uma mudança profunda nas propriedades físicas de um material quando da sua transição vítrea, esse processo não é uma mudança de fase (como fusão ou solidificação), mas sim um fenômeno que se estende ao longo de uma faixa de temperatura definido por uma série de convenções.[2][3] Tais convenções incluem uma constante de taxa de resfriamento (20 K/min)[1] e um limiar de viscosidade de 1012 Pa·s, entre outros parâmetros. Aquecendo-se ou resfriando-se um material no intervalo de temperatura no qual ocorre a transição vítrea, esse material também apresenta uma suave variação no coeficiente de expansão térmica e no calor específico, efeito que dependerá do histórico do material (variações de temperatura e/ou pressão ou aplicações de forças às quais o material foi submetido ao longo do tempo). Entretanto, a questão de quando uma transição de fase constitui uma transição vítrea continua sendo estudada.[2][3][4]
temperatura de transição vítreaTg (do inglês glass transition temperature), é um valor representativo de aproximadamente metade do intervalo de transição vítrea, e é sempre menor que a temperatura de fusão, Tm (do inglês melting temperature) ou Tf , do material no estado cristalino, se esse existir.



O Paradoxo de Kauzmann[editar | editar código-fonte]

À medida que o líquido é super-resfriado, a diferença de entropia entre as fases sólida e líquida diminui. Por extrapolação da capacidade térmica de um líquido super-resfriado abaixo da sua Tg, é possível calcular a temperatura na qual a diferença entre as entropias é zero. Tal temperatura é chamada a temperatura de Kauzmann de um material.
Se um líquido pudesse ser resfirado a temperaturas menores que sua temperatura de Kauzmann, e mesmo assim apresentasse uma entropia menor que a da fase cristalina, as consequências disso seriam paradoxais. Este "paradoxo de Kauzmann" tem sido tema de vários debates e publicações desde que foi apresentado pela primeira vez por Walter Kauzmann em 1948.[29]
Uma solução proposta é dizer que deve ocorrer uma transição de fase antes de a entropia do líquido diminuir. Neste cenário, a temperatura de transição é conhecida como "temperatura de transição vítrea calorimétrica ideal", T0c. Nessa visão, a transição vítrea não é meramente um efeito cinético, i.e., o resultado do resfriamento rápido de um fundido, mas sim constitui uma base termodinâmica para a formação do estado vítreo. Esse comportamento da temperatura de transição vítrea é dado pela seguinte expressão:
 à medida que 
x

FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.= X

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

seja, a Tg tende a T0c assim como a variação de temperatura num intervalo infinitesimal de tempo tende a zero.
Há pelo menos outras três possíveis soluções para o paradoxo de Kauzmann. Uma delas define que a capacidade térmica de um líquido super-resfriado a temperatura próxima à de Kauzmann diminui suavemente para um valor menor. Propõe-se também que uma transição de fase de primeira ordem para outro estágio do estado líquido ocorre antes da temperatura de Kauzmann com a capacidade térmica desse estágio sendo menor do que a obtida por extrapolação da temperatura de Kauzmann (mais alta). Finalmente, o próprio Kauzmann resolveu seu paradoxo de entropia postulando que líquidos super-resfriados devem cristalizar antes que a temperatura de Kauzmann seja atingida, caso contrário, forma-se o sólido amorfo.

A transição vítrea para alguns materiais[editar | editar código-fonte]

Sílica, SiO2[editar | editar código-fonte]

Estrutura amorfa da sílica, SiO2, em duas dimensões.
Sílica (o composto químico SiO2) possui várias formas cristalinas diferentes além do quartzo. Quase todas são formadas pela unidade tetraedral SiO4 unidas por vértices compartilhados (oxigênio) em diferentes arranjos cristalinos. O comprimento das ligações SiO varia para diferentes cristais. Por exemplo, no quartzo-α, o comprimento da ligação é 161 pm, enquanto na tridimita-α ele pode variar de 154 a 71 pm. O ângulo da ligação Si―O―Si varia de 140° na tridimita-α para 144° no quartzo-α e para 180° na tridimita-β. Quaisquer divergências em relação a esse padrão constituem variações ou diferenças microestruturais que representam uma aproximação para os sólidos amorfos ou sólidos vítreos. A Tg, para os silicatos, está relacionada à energia requerida para quebrar e/ou formar novas ligações covalentes numa rede amorfa. A Tg é claramente influenciada pelas características químicas do vidro. Por exemplo, a adição de elementos como borosódiopotássio ou cálcio a um vidro de sílica, que tenham valência menor que 4, ajuda na quebra de ligações da estrutura, reduzindo a Tg. Alternativamente, fósforo, que tem valência 5, ajuda a fortalecer a rede, portanto aumentando a Tg.[30] A Tg é diretamente proporcional à força de ligação, i.e., depende de parâmetros termodinâmicos de quase-equilíbrio das ligações, como a entalpia Hd e a entropia Sd dos configurons, excitações elementares resultantes de ligações rompidas em materiais amorfos, como vê-se na seguinte equação (M. I. Ojovan, 2008):
x

FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.= X

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

onde R é constante universal dos gases ideais e fc é o limiar de percolação. Para "fundidos fortes" (líquidos para os quais log(η) é linear em relação a Tg / T), como SiO2, o limiar de percolação na equação é a "densidade crítica universal de Scher-Zallen no espaço tridimensional", ou seja, fc = 0.15, e, para "líquidos frágeis" (log(η) é não-linear em relação a Tg / T), o limiar de percolação é uma propriedade dependente do material, sendo fc << 1.[31] A entalpia Hd e a entropiaSd dos configurons podem ser determinadas a partir informações experimentais obtidas da viscosidade.[32]